Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Xian-Fa Zhang, Shan Gao,* Li-Hua Huo and Hui Zhao

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.039$
$w R$ factor $=0.089$
Data-to-parameter ratio $=15.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

(1 H -Benzimidazole- $\kappa \mathrm{N}^{3}$)[3-methoxysalicylaldehyde (4-methoxybenzoyl)hydrazonato$\left.\boldsymbol{\kappa}^{3} O, N, O^{\prime}\right] \operatorname{copper}($ II $)$ methanol solvate

In the title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\right] \cdot \mathrm{CH}_{4} \mathrm{O}$, $[\mathrm{Cu}(L)(1 H$-benzimidazole $)] \cdot \mathrm{CH}_{3} \mathrm{OH}, \quad\left[\mathrm{H}_{2} L=3\right.$-methoxysalicylaldehyde (4-methoxybenzoyl)hydrazone, $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$], the $\mathrm{Cu}^{\mathrm{II}}$ atom is coordinated by two O atoms and one N atom of the fully deprotonated tridentate hydrazone ligand and one N atom from the 1 H -benzimidazole molecule, thus defining a square planar coordination geometry. Adjacent molecules are linked by hydrogen bonds into a chain structure.

Comment

The study of metal-hydrazone complexes is currently a subject of extensive research owing to their increasingly recognized biochemical activities. Most of the hydrazone ligands are formed by condensing benzoylhydrazine with acetylacetones, salicylaldehydes and their derivatives (Iskander et al., 2000; Rao et al., 1999). 3-Methoxysalicylaldehyde (4-methoxybenzoyl)hydrazone is a potential tridentate chelating agent formed by condensing 3-methoxysalicylaldehyde with 4-methoxybenzoylhydrazine. Recently, we have reported some complexes, viz. $\left[\mathrm{VOL}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)\right]$ and $\left[\mathrm{Fe}(\mathrm{HL}) \mathrm{Cl}_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{OH}$ (Huo, Gao, Liu, Zhao \& Ng, 2004; Huo, Gao, Liu, Li et al., 2004), in which the metal ions display distorted octahedral geometry, and [VOL(CH3O)] (Huo, Gao, Liu, Li \& Ng, 2004), in which the V atom displays a distorted square-pyramidal configuration. As a result of our continuing study in the field, we report here the crystal structure of a new copper(II) complex, ($1 H$-benzimidazoleκN^{3})[3-methoxysalicylaldehyde (4-methoxybenzoyl)hydrazo-nato- $\left.\kappa^{3} O, N, O^{\prime}\right]$ copper(II) methanol solvate, $[\mathrm{Cu}(L)(1 H-$ benzimidazole) $] \cdot \mathrm{CH}_{3} \mathrm{OH}\left[\mathrm{H}_{2} L=3\right.$-methoxysalicylaldehyde (4-methoxybenzoyl)hydrazone], (I), acquired from the reaction of copper diacetate monohydrate, 1 H -benzimidazole and $\mathrm{H}_{2} L$ in methanol solution.

(I)

As shown in Fig. 1, the asymmetric unit of the crystal structure of (I) consists of the mononuclear $[\mathrm{Cu}(L)(1 H-$ benzimidazole)] complex and one methanol molecule. The coordination geometry of the $\mathrm{Cu}^{\mathrm{II}}$ atom is square planar, in which the four coordination sites are occupied by two O atoms

Received 12 October 2004 Accepted 14 October 2004 Online 22 October 2004

Figure 1
ORTEPII (Johnson, 1976) plot of (I), shown with 30% probability ellipsoids

Figure 2
Detail of (I) showing part of the hydrogen-bonded chain structure. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted.
and one N atom of the fully deprotonated tridentate hydrazone ligand, and one N atom from the benzimidazole molecule [r.m.s. deviation $=0.02$ (3) \AA and deviation of the Cu atom from the mean plane $=0.019$ (3) $\AA]$. The $\mathrm{Cu}-\mathrm{O} 1$ distance [1.938 (2) \AA] is longer than that of $\mathrm{Cu}-\mathrm{O} 3$ [1.875 (2) \AA] , and the $\mathrm{Cu}-\mathrm{N} 3$ distance of 1.960 (3) \AA is the longest among all the coordination bond lengths. It should be noted that the $\mathrm{O} 1-\mathrm{C} 1, \mathrm{O} 3-\mathrm{C} 15, \mathrm{~N} 1-\mathrm{C} 1$ and $\mathrm{N} 2-\mathrm{C} 9$ bond lengths of 1.274 (4), 1.302 (4), 1.323 (4) and 1.283 (5) Å, respectively, are relatively short, suggesting delocalization in the hydrazone ligand. The fully deprotonated tridentate hydrazone ligand is essentially planar, with an overall r.m.s. deviation of 0.10 (3) Å. The five-membered $\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{Cu} 1$ chelate ring [r.m.s. deviation $=0.02(3) \AA$] and the six-membered $\mathrm{O} 3 / \mathrm{C} 9 /$ $\mathrm{C} 10 / \mathrm{C} 15 / \mathrm{N} 2 / \mathrm{Cu} 1$ chelate ring [r.m.s. deviation $=0.03(3) \AA$] are approximately coplanar, the dihedral angle being $2.4(3)^{\circ}$.

The crystal structure is stabilized through intermolecular hydrogen bonds between the hydroxyl H atom of methanol and the uncoordinated hydrazidic N atom of an adjacent molecule, and the hydroxyl O atom of methanol also acts as a hydrogen-bond acceptor, forming a hydrogen bond with the NH group of benzimidazole. Adjacent molecules are linked by these hydrogen-bond interactions into a chain structure (Table 2 and Fig. 2).

Experimental

The ligand 3-methoxysalicylaldehyde (4-methoxybenzoyl)hydrazone was synthesized by condensing 3 -methoxysalicylaldehyde with equimolar 4-methoxybenzoylhydrazine in ethanol (Gao et al., 1998). Copper diacetate monohydrate (1 mmol) and $1 H$-benzimidazole (1 mmol) were added to a 30 ml methanol solution containing 3methoxysalicylaldehyde (4-methoxybenzoyl)hydrazone (1 mmol). The resulting mixture was refluxed with stirring for 45 min and then cooled slowly to room temperature and filtered. Blue prism-shaped crystals were obtained from the solution over a period of several days. Analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{CuN}_{4} \mathrm{O}_{5}$: C 56.30 , H 4.72, N 10.94%; found: C 56.35, H 4.67, N 10.99%.
Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\right] \cdot \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=512.02$
Monoclinic, Pc
$a=13.534(3) \AA$ 。
$b=5.0710(10) \AA$
$c=21.294(6) \AA$
$\beta=128.31(2)^{\circ}$
$V=1146.7(6) \AA^{3}$
$Z=2$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.703, T_{\text {max }}=0.841$
10067 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.089$
$S=1.02$
4912 reflections
316 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.483 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9816
reflections
$\theta=3.0-27.5^{\circ}$
$\mu=1.00 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, blue
$0.38 \times 0.25 \times 0.18 \mathrm{~mm}$

4912 independent reflections
4199 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-17 \rightarrow 17$
$k=-6 \rightarrow 6$
$l=-27 \rightarrow 27$

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0569 P)^{2}\right]
$$

where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.45 \mathrm{e}^{\circ} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
2320 Friedel pairs
Flack parameter $=0.015(11)$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right.$).

$\mathrm{Cu} 1-\mathrm{N} 2$	$1.920(3)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.394(3)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$1.960(3)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.283(5)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.938(2)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.274(4)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.875(2)$	$\mathrm{O} 3-\mathrm{C} 15$	$1.302(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.323(4)$		
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 3$	$179.2(1)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 2$	$92.5(1)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1$	$80.8(1)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 3$	$88.2(1)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$98.5(1)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 1$	$172.9(1)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N4-H25 \cdots O5				
O5-H26	$0.91(2)$	$1.86(2)$	$2.756(4)$	$171(4)$
Symmetry	$0.85(5)$	$1.99(5)$	$2.800(4)$	$158(5)$

Symmetry code: (i) $x-1,1-y, z-\frac{1}{2}$.
H atoms on carbon were placed in calculated positions, with $\mathrm{C}-$ $\mathrm{H}=0.93$ (aromatic) and $0.96 \AA$ (methyl), and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (methyl C) in the riding-model approximation. H atoms on oxygen and nitrogen were located in difference Fourier synthesis maps and refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distance restraints of $0.85(1)$ and $0.90(1) \AA$, respectively, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{N}, \mathrm{O})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 20101003), Heilongjiang Province Natural Science

Foundation (No. B0007), the Outstanding Teacher Foundation of Heilongjiang Province (1054G036) and Heilongjiang University.

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gao, S., Weng, Z.-Q. \& Liu, S.-X. (1998). Polyhedron, 17, 3595-3606.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Huo, L.-H., Gao, S., Liu, J.-W., Li, J. \& Ng, S.-W. (2004). Acta Cryst. E60, m758m760.
Huo, L.-H., Gao, S., Liu, J.-W., Li, J., Zhao, H. \& Zhao, J. G. (2004). Acta Cryst. E60, m673-m675.
Huo, L.-H., Gao, S., Liu, J.-W., Zhao, H. \& Ng, S.-W. (2004). Acta Cryst. E60, m606-m608.
Iskander, M. F., Khalil, T. E., Werner, R., Haase, W., Svoboda, I. \& Fuess, H. (2000). Polyhedron, 19, 1181-1191.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rao, S. N., Munshi, K. N., Rao, N. N., Bhadbhade, M. M. \& Suresh, E. (1999). Polyhedron, 18, 2491-2497.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

